MATH 135 - QUIZ 10 SOLUTIONS - JAMES HOLLAND

2019-11-12

Question 1. Suppose the cost of making $x>0$ loaves of bread is (in dollars)

$$
C(x)=x^{3}-9 x^{2}+16 x+1
$$

After making x loaves of bread, suppose each loaf will be sold for $p(x)=1+\frac{100}{x}$ dollars. Determine the level of production of loaves that maximizes profit.

Solution :

The revenue from selling all x loaves is $x \cdot p(x)=x+100$. The profit is thus given by $P(x)=x \cdot p(x)-C(x)$, which means we are trying to maximize

$$
P(x)=x+100-x^{3}+9 x^{2}-16 x+99=-x^{3}+9 x^{2}-15 x+99
$$

To find the maximum of this, we just need to find the critical points, and then classify them using derivative tests. To find the critical points, note that

$$
P^{\prime}(x)=-3 x^{2}+18 x-15=-3\left(x^{2}-6 x+5\right)=-3(x-5)(x-1)
$$

This is 0 iff $x=5$ or $x=1$. These yield critical points of $(5, P(5))$ and $(1, P(1))$. To classify the critical points, we use the first derivative test;

- For $x<1$, one can see that $(x-5)<(x-1)<0$ and so $P^{\prime}(x)$ is negative on $(0,1)$.
- For $1<x<5$, one can see that $(x-5)<0$ while $0<(x-1)$. Hence $P^{\prime}(x)$ is positive on $(1,5)$.
- For $x>5,(x-1)>(x-5)>0$ so that $P^{\prime}(x)$ is negative on $(5, \infty)$.

So we get the following number line that allows us to see that $(1, P(1))$ is a relative minimum while $(5, P(5))$ is a relative maximum.

To confirm that $(5, P(5))$ is an actual maximum for $P(x)$ on $x>0$, we must check the endpoint of $0 .{ }^{i}$ Since $P(0)=99<P(5)=124$, it follows that $x=5$ loaves of bread gives a maximum profit.

Question 2. Suppose it takes $T(x)=x^{3}-2 x \ln (x)$ minutes to help $x>0$ patients. Find the minimum average time spent per patient.
Proof .:
The average time spent is $A(x)=T(x) / x=x^{2}-2 \ln (x)$. To find the minimum of this, we find the critical points, and then classify them using derivative tests. $A^{\prime}(x)=2 x-2 / x$, which is undefined when $x=0$. But this doesn't correspond to a critical point, since 0 isn't in the domain of A. So the only critical numbers we care about are those that give $0=A^{\prime}(x)=2 x-2 / x$, which means $2 x=2 / x$ and thus $x^{2}=1$. Since $x>0$, this means $x=1$, and so $(1, A(1))=(1,1)$ is the only critical point.

To classify the critical points, we use the first derivative test. For $0<x<1, x<1 / x$ so that $A^{\prime}(x)<0$. For $x>1, x>1 / x$ so that $A^{\prime}(x)>0$. Hence we get the following number line that allows us to see that $(1, A(1))=(1,1)$ is a minimum for A on $(0, \infty)$.

Thus the minimum average time spent per patient is $A(1)=1$.

[^0]
[^0]: ${ }^{\text {i }}$ The "endpoint" of ∞ as been dealt with by the first-derivative test: $\lim _{x \rightarrow \infty} P(x)<P(5)$, because P always decreases after 5 .

